

Gravitational Lensing with SNAP

Richard Ellis (Caltech)

Two Unknown Cosmic Constituents

Spatial flatness revealed by recent microwave background results indicates *two* unknown components of cosmic energy:

- Vacuum energy(L term or variant)
- Gravitating dark matter (non baryonic)

We need to physically understand BOTH components

Scientific Promise of Gravitational Lensing

- Distribution of dark matter on various scales unique probe
- Constraints on **W**, **L**, *w*...complementing and breaking degeneracies present in other methods (SNe, CMB)
- Verification of gravitational instability via direct evolutionary tests
- Masses of galactic halos by morphology, epoch & environment (via `galaxy-galaxy' lensing)

`Cosmic Shear' from Large-scale Structure

® ground-based data yields only weak constraints on cosmological models

The Limitations of Weak Lensing Programs SNAP

Recent detailed study

Bacon et al (astro-ph/0007023)

Noise:

- Seeing induced noise dominates signal if s > 0.8 arcsec
- Statistical arising from surface density/field/depth

Systematics:

- instrumental shear e.g. optical aberrations » 0.3% rms
- redshift distributions (foreground & background) $\mathbf{D}_{\mathbf{z}} = \pm 0.2$
- biases in algorithms < 0.5% rms

The Way Forward: Space

Not just better images:

less reliance on PSF + enhanced surface density of resolved galaxies

What can SNAP achieve?

Superior image quality & survey depth SNR μ n^{0.5} z^{0.7} s⁻¹ ® x 5-10 improvement (before considering reduced systematics)

- High precision measurements of power spectrum and cosmological parameters: Ω_m , Λ , S_8 , etc. complements SNe and other methods
- Maps of the DM distribution: mass limited cluster catalogs,
 DM in filaments and voids
- Evolution of large-scale structure: direct tests of gravitational instability via redshift-dependences
- Galaxy-galaxy lensing: galactic mass as function (z,type, environs)

Mapping the Dark Matter

0.5° x 0.5° simulation (ACDM, Jain et al)

Recovering the mass distribution with typical ground-based data

ACDM: 1 arcmin smoothed

4-m telescope survey

Recovering the mass distribution with SNAP

ΛCDM: 1 arcmin smoothed

SNAP survey

Lensing Power Spectrum

SNAP WF survey [300 deg²; 100 g arcmin⁻²; HST image quality]

New cosmological constraints

Data will break current degeneracies (e.g. \mathbf{W}_{M} and \mathbf{s}_{8} ; \mathbf{W}_{M} and \mathbf{w})

Complementarity of Weak Lensing & Supernovae

Weak Lensing constrains **W** with little dependence on w

Allows study of evolution of w with SNe

Ground vs Space

Unrivalled Strengths of SNAP for Weak Lensing Studies

- Wide field in space large survey area with exquisite image quality
- Stringent optical requirements and small psf greatly reduced systematics
- Depth of survey unsurpassed statistics and mapping resolution
- Many photometric bands evolution of structure as function of redshift
- Multiple exposures control of systematics
 - Precision cosmology and maps of the Dark Matter